A Study of the Rapid Anomerization of Poly-O-benzyl-β-D-glucopyranosides with Titanium Tetrachloride

Shinkiti Koto,* Naohiko Morishima, Reiko Kawahara, Katsuhiko Ishikawa, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Received March 6, 1981)

Titanium tetrachloride rapidly anomerizes methyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside in dichloromethane at 25 °C. Evidence for the proposal that the benzyloxymethyl group on C-5 and the ring oxygen of the glucoside cooperate to prompt the reaction is described. The reagent anomerizes the interglycosidic linkage of several disaccharide derivatives.

The anomerization of per-O-acetyl- β -D-glucopyranosides, 1) as well as of per-O-benzoyl ones, 2) with titanium tetrachloride (1) is useful for preparing the corresponding α-D-glucopyranosides³⁾ and has been well studied.⁴⁾ In spite of this, no report about such a reaction of per-Obenzyl-β-D-glucopyranosides has appeared. As has been communicated, however, methyl 2,3,4,6-tetra-O-benzyl- β -D-glucopyranoside (2b) was anomerized with an extraordinary rapidity into the α-anomer (2a) in the presence of 1 in dichloromethane at 25 °C.5) This paper will present evidence for the mechanism previously proposed⁵⁾ in which the benzyloxymethyl group and the ring oxygen of 2b play an important role in accelerating the reaction. The reagent was applied to the anomerization of the interglycosidic linkage of several disaccharide derivatives.

Results and Discussion

Table 1 shows the dependence of the anomerization reaction of **2b** on the molar ratio of **1** to **2b** and the time course of the reaction. The molar ratio should be greater than 0.5 to keep the efficiency of the reaction high. The equimolar amount of **1** completed the reaction within 10 s.

Table 1. Anomerization of methyl per-O-benzyl- β -d-glucopyranoside ($2\mathbf{b}$) with titanium tetrachloride in dichloromethane

Mole ratio of TiCl ₄ to the glucoside		Content of the α-anomer/% a)	Recovery of the glucosides/% b)
0.2	300	42	96
0.2	3600	76	92
0.5	300	89	93
1.0	4	90	78
1.0	10	96	78
1.0	300	96	77

a) Mol% of α -glucoside to the sum of unchanged β -glucoside and anomerized α -one. b) Sum of yield of α -glucoside and recovery of unchanged β -one.

Interestingly, Table 2 shows that $2\mathbf{b}$ was anomerized much faster than was methyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside ($3\mathbf{b}$). The replacement of the acetyl group at C-6 of $3\mathbf{b}$ with a benzyl one (Compound $4\mathbf{b}$) had remarkable accelerating effects on the reaction. However, the replacement of acetyl groups at C-2, -3, and -4 with a benzyl one (Compound $26\mathbf{b}$) did not

Table 2. Effect of substituents on the anomerization^{a)}

Compd	R¹	R²	R³	R4	Time	Content of the α -anomer $\frac{\%^{b}}{\%^{b}}$	Recovery of the glucosides
2b	Bn	Bn	Bn	Bn	4	90	78
					300	96	78
3ь	Ac	\mathbf{Ac}	Ac	\mathbf{Ac}	300	3	100
4 b	\mathbf{Ac}	$\mathbf{A}\mathbf{c}$	Ac	Bn	4	59	88
					300	98	87
12b	Bn	Bn	$\mathbf{B}\mathbf{n}$	Me	4	96	79
13b	Bn	Bn	Bn	—c)	4	12	67
14b	Bn	$\mathbf{B}\mathbf{n}$	Bn	d)	4	7	50
19Ь	\mathbf{Ac}	Bn	Bn	Bn	300	100	67
21b	Bn	$\mathbf{A}\mathbf{c}$	Bn	Bn	300	99	85
25b	Bn	Bn	Ac	Bn	300	100	80
26b	Bn	Bn	Bn	Ac	300	4	70
27b ^{e)}	Bn	Bn	\mathbf{Ac}	Ac	300	0	74
28Ь	Ac	Ac	Ac	Me	4	74	95

- a) The mole ratio of TiCl₄ to the glucoside was 1.0.
- b) They are defined in Table 1. c) X=Me. d) X=H.
- e) A. P. Tulloch and A. Hill, Can. J. Chem., **46**, 2485 (1968).

accelerate the reaction appreciably. Compounds 19b, 21b, and 25b, all of them with a benzyloxyl group at C-6, showed fast anomerization rates.

Н

14b

Н

OMe

Furthermore, the methoxyl group at C-6 considerably accelerates the reaction; the effect was even greater than that by a benzyloxyl group. This indicates that an ether group at C-6 is essential for the rapid anomerization. The slight retardation shown by **4b** and **28b** at 4 s seems to be due to electron-withdrawing acetoxyl groups, which might depress the affinity of O-5 to **1**

Table 3. Retarding effect of additives on the anomerization^{a)}

		ON THE AN	OMERIZATION	
•	Additives	Mole ratio to the glucoside, 2b	Content of the α-anomer/% ^{b)}	Recovery of the glucosides/% b)
•	5	2.0	34	86
	6	1.0	57	84
	7	2.0	85	87
	8	1.0	7	87
	9	1.0	8	86
	10	1.0	2	89
	11	1.0	21	84

a) The mole ratio of TiCl₄ to the glucoside was 1.0; reactions were conducted for 4 s. b) They are defined in Table 1.

Fig. 1. A mechanism for the rapid anomerization reaction of methyl per-O-benzyl- β -D-glucopyranoside.

and/or the ability of C-1 to dissociate the bond between O-5 (Fig. 1).6)

These facts caused us to wonder if the benzyloxymethyl group in 2b or 4b has a special promoting function, possibly by assisting the interaction between the ring oxygen and 1.4a) Additives which structurally resemble the C₆H₅CH₂-O-CH₂-C(5)-O(5)-moiety of 2b are thought to compete with 2b in capturing 1, thus retarding the reaction. Table 3 shows how additives with benzyloxyl and/or acetoxyl group(s) in their structure retard the reaction of 2b. Additives, such as ethyl acetate($\mathbf{5}$), 2-methoxyethyl acetate($\mathbf{6}$), and benzyl ethyl ether (7), did not clearly retard the anomerization of 2b. This indicates that neither of these additives can be a ligand possessing more affinity to 1 than can 2b Especially, the fact that 7 did not impede the reaction, while 4b was anomerized rapidly, suggests that the benzyloxymethyl group of 4b, and consequently of 2b, is not fully responsible for the rapidity of the anomerization of 4b and, hence, of 2b. However, 1,2-bis(benzyl-

Table 4. Effect of aglycon on the anomerization

Compd	Aglycon	Time	Content of the α -anomer $\frac{0}{6}^{a}$	Recovery of the glucosides %b)
29b	Cyclohexylmethyl	4	100	80
30ь	Cyclohexyl	2	100	87
31b	Benzyl	4	100	78
32b	2-Benzyloxyethyl	4	93	54
33Ь	3-Benzyloxypropyl	4	99	80
34b	6-Benzyloxyhexyl	4	100	7 6

- a) The mole ratio of TiCl₄ to the glucoside was 1.0.
- b) They are defined in Table 1.

oxy)ethane (8) and 1-benzyloxy-2-methoxyethane (9), as expected, inhibit the reaction clearly. 2-(Benzyloxymethyl)tetrahydropyran (10), whose structure is closely related to the pyranose ring system, hindered the reaction almost completely. This indicates that the C₆H₅CH₂-O-CH₂CH₂-O- moiety can effectively compete with 2b in capturing 1. It should also be noted that Compound 11, in which the benzyloxyl groups are linked to the cyclohexane ring, showed a weaker inhibitory effect; this is apparently because benzyloxymethylene groups have lesser flexibility than the benzyloxymethyl one when they complex with 1. From the things described so far there emerges the conclusion that the diffunctional C₆H₅CH₉-O-CH₉-C(5)-O(5)- moiety of **2b** is the part which preferentially coordinates with 1, in competition with other benzyloxyl groups, in the reaction where 1 assists the cleavage of the C(1)-O(5) bond^{7,8b)} (Fig. 1). The fact that the 6-O-methyl glucoside derivative (12b) is rapidly anomerized, while the 6-deoxy one (13b) is not, is consistent with the above conclusion (Table 2). In this connection, it is remarkable that methyl 2,3,4-tri-Obenzyl- β -D-xylopyranoside (14b) was anomerized slower than **2b**, whereas methyl 2,3,4-tri-O-acetyl-β-D-xylopyranoside was anomerized faster than 3b.8b)

As for aglycon, 1 was even more effective for such alkyl groups as cyclohexylmethyl, cyclohexyl, and benzyl (Table 4). In some cases, no trace of β -glucoside was found in the reaction mixture.

The positional effect of the benzyloxyl group in aglycon was then studied in order to ascertain the scope of the reaction. ^{8a)} Table 4 shows that, when the benzyloxyl group is present at the carbon vicinal to the one which links with the glucosyloxyl residue, the efficiency of the reaction decreases and the recovery of the anomeric glucosides is seriously diminished. In this case, 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose was isolated in a fair yield after the chromatography of the reaction mixture. This seems to be produced *via* the hydrolysis of the complex (15). Therefore, the reaction is not suitable for anomerizing the interglycosidic linkage of per-O-benzylated disaccharides.

Nevertheless, the findings described so far stimulated us to try to anomerize the per-O-benzyl derivative of disaccharides. The gentiobiose derivative (16b) was rapidly transformed into the isomaltose one (16a) with 1 at room temperature. The per-O-benzyl derivative (17b) of methyl 3-O-(β -D-glucopyranosyl)- α -D-xylopyranoside, the aglycon monosaccharide of which has no benzyloxymethyl group, inverted the configuration of its interglycosidic linkage, though the recovery was not so high. To our knowledge, the latter is the first case of the anomerization of the interglycosidic β -linkage of a secondary hydroxyl group of disaccharide. β -a

	R	R'	√OBn
16a	H-	OGlc ⁶	BnO
16b	OGlc ⁶	Н	BnO
17a	Н	OXyl ³	Brio I,
17b	OXyl ³	H	R'
29 a	Н	OCm	
29b	OCm	Н	
30a	Н	OCh	Bn = benzyl
30b	OCh	Н	Ch = cyclohexyl
31 a	Н	OBn	Cm = cyclohexylmethyl
31b	OBn	H	
32a	Н	O(CH ₂) ₂ OBn	$Glc^6 = BnO O$
32b	$O(CH_2)_2OBn$	Н	Glc° = BnO
33 a	Н	$O(CH_2)_3OBn$	BnÓ OMe
33b	$O(CH_2)_3OBn$	Н	$Xyl^3 = BnO O$
34a	Н	$O(CH_2)_6OBn$	3 \ 1
34b	O(CH ₂) ₆ OBn	Н	Bn0 OMe

Experimental

The melting points were determined on an MP-1 melting point apparatus (Yanagimoto) and are uncorrected. The optical rotations were measured with a DIP-180 automatic polarimeter (Japan Spectroscopic) in a jacketed 1-dm cell at 20 °C. The ¹H NMR spectra were recorded with a Varian S-60T spectrometer, and the ¹³C NMR spectra, with a JEOL-PS-100, using TMS as the internal standard. The refractive indexes were determined with an Abbe refractometer, Model 3 (Atago), at 20 °C. Column chromatography was carried out on silica gel (Kanto Kagaku), using an appropriate solvent system of Solvent A (benzene-2-butanone), B (hexane-ethyl acetate), or C (chloroform-methanol); each fraction was examined by means of TLC on silica gel (Merck, 7731). The dichloromethane (Wako) was distilled and stored over a molecular sieve (Linde 3A). The catalyst 1 (Wako) was distilled before use. The ethyl acetate (5, Wako), 2-methoxyethyl acetate (6, Tokyo Kasei), benzyl ethyl ether (7, Wako), and 1,2-bis(benzyloxy)ethane (8, Tokyo Kasei) were used without any pre-treatment.

General Procedure for Anomerization. The β -glucoside (0.1 mmol) was dissolved in dichloromethane (1.0 ml) in a stoppered vial, into which $\mathbf{1}$ was then injected under stirring at room temperature. The reaction was quenched by the addition of a mixture of aq sodium hydrogenearbonate (5%, 1.0 ml) and ice (≈ 5 g). In the case of the reaction within 4 s, an open vessel was used: dichloromethane was injected into a stoppered vial containing the β -glucoside, and then, just after the removal of the stopper, $\mathbf{1}$ was shot into the solution under efficient stirring, with care taken to avoid any bubbling. The mixture was extracted with benzene (15 ml), and the organic

layer was washed with water (5 ml) and evaporated to give the product mixture, which was then chromatographed.

The additive, when necessary, was injected into the vessel before the addition of 1.

Preparation of β -Glucosides and Isolation of α -Glucosides Formed by Anomerization. Methyl 2,3,4,6-Tetra-O-benzyl- α -D-glucopyranoside (2a): The treatment of $2b^9$) with 1, followed by processing and chromatography (Solvent A, 30:1), gave 2a as a syrup, identified with an authentic sample. 10

Methyl 2,3,4-Tri-O-acetyl-6-O-benzyl-β-D-glucopyranoside (4b): A mixture of methyl β-D-glucopyranoside (1.0 g, 5.2 mmol), sodium hydride (\approx 50% dispersion, 0.39 g, \approx 8.1 mmol), and benzyl chloride (Tokyo Kasei, 30 ml) was stirred for 1.5 h at 100 °C and then evaporated on a boiling water bath to give an oily product mixture. Column chromatography (Solvent C, gradient) and subsequent crystallization from diisopropyl ether containing ethanol gave methyl 6-O-benzyl-β-D-glucopyranoside (18, 0.28 g, 19%): mp 97—98 °C, [α]_D —36° (c 1.0, CHCl₃), NMR ((CD₃)₂CO) δ=3.51 (s, 3, CH₃O), 4.61 (s, 2, PhCH₂), and 7.36 (s, 5, C₆H₅). Found: C, 58.91; H, 7.08%. Calcd for C₁₄H₂₀O₆: C, 59.14; H, 7.09%.

The acetylation of **18** with acetic anhydride in pyridine and subsequent crystallization from diisopropyl ether gave **4b**: mp 104—105 °C, $[\alpha]_D$ —1° (c 0.7, CHCl₃): NMR (CCl₄) δ =1.84 (s, 3, CH₃CO), 1.94 (s, 3, CH₃CO), 1.98 (s, 3, CH₃CO), 3.45 (s, 3, CH₃O), 4.33 (d, 1, J=7.8 Hz, H-1), 4.48 (s, 2, PhCH₂), and 7.27 (s, 5, C₆H₅). Found: C, 58.24; H, 6.37%. Calcd for C₂₀H₂₆O₉: C, 58.53; H, 6.39%.

Methyl 2,3,4-Tri-O-acetyl-6-O-benzyl-α-D-glucopyranoside (4a): The treatment of 4b with 1, followed by the aforementioned work-up and chromatographic separation (Solvent B, 6:1), gave 4a as a syrup: $[\alpha]_D + 131^\circ$ (c 2.0, CHCl₃); NMR(CCl₄) δ=1.85 (s, 3, CH₃CO), 1.93 (s, 3, CH₃CO), 2.01 (s, 3, CH₃CO), 3.39 (s, 3, CH₃O), 3.86 (m, 1, H-5), 4.46 (s, 2, PhCH₂), 4.72 (dd, 1, J=3.5 and 9.0 Hz, H-2), 4.85 (d, 1, J=3.5 Hz, H-1), 4.92 (t, 1, J=9.0 Hz, H-4), 5.31 (t, 1, J=9.0 Hz, H-3), and 7.25 (s, 5, C₆H₅). Found: C, 58.48; H, 6.28%. Calcd for C₂₀H₂₆O₉: C, 58.53; H, 6.39%.

Methyl 2-O-Acetyl-3,4,6-tri-O-benzyl-β-D-glucopyranoside (19b): A mixture of 3,4,6-tri-O-benzyl-1,2-O-(1-ethoxyethylidene)-α-D-glucopyranose¹¹⁾ (0.88 g), methanol (68 μl), mercury (II) bromide (18 mg), and nitromethane (10 ml) was stirred for 1 h at 100 °C¹²⁾ and then evaporated after a few drops of pyridine had been added. The residue was chromatographed (Solvent B, 10:1), and the fractions (R_f =0.45, Solvent B, 5:1) were collected and crystallized from diisopropyl ether to give 19b (0.24 g, 28%): mp 51.5—52 °C; [α]_D +4° (c 1.0, CHCl₃); NMR(CCl₄) δ =1.96 (s, 3, CH₃CO), 3.47 (s, 3, CH₃O), 4.32 (d, 1, J=8.0 Hz, H-1), 7.22—7.33 (15, 3C₆H₅). Found: C, 70.90; H, 6.70%. Calcd for C₃₀H₃₄O₇: C, 71.13; H, 6.77%.

Methyl 2-O-Acetyl-3,4,6-tri-O-benzyl- α -D-glucopyranoside(19a): The treatment of 19b with 1 and subsequent chromatographic separation (Solvent A, 30:1) gave 19a as a syrup: $[\alpha]_D + 83^\circ$ (c 0.8, CHCl₃); NMR(CCl₄) δ =1.90 (s, 3, CH₃CO), 3.30 (s, 3, CH₃O), and 7.13—7.21 (15, 3C₆H₅). Found: C, 70.70; H, 6.83%. Calcd for C₃₀H₃₄O₇: C, 71.13; H, 6.77%.

Methyl 3-O-Acetyl-2,4,6-tri-O-benzyl-β-D-glucopyranoside (21b): A mixture of methyl β-D-glucopyranoside hemihydrate (Tokyo Kasei, 1.02 g, 5 mmol), sodium hydride (\approx 60% dispersion, 0.80 g, \approx 20 mmol), and benzyl chloride (10 ml) was heated under efficient stirring for 3 h at 100 °C. The mixture was processed and chromatographed (Solvent A, gradient) to afford 2b (0.33 g, 12%, $R_{\rm f}$ =0.75, Solvent A, 10:1) and then methyl 2,4,6-tri-O-benzyl-β-D-glucopyranoside (20, 0.56 g, 24%, $R_{\rm f}$ =0.45): [α]_D +19° (ε 1.0, CHCl₃). Found: C,

72.23; H, 7.09%. Calcd for C₂₈H₃₂O₆: C, 72.39; H, 6.94%.

The acetylation of **20** with acetic anhydride in pyridine and subsequent crystallization from hexane gave **21b**: mp 109.5—110 °C, $[\alpha]_D$ +18° (c 1.0, CHCl₃); NMR (CDCl₃) δ =1.83 (s, 3, CH₃CO), 3.56 (s, 3, CH₃O), 4.34 (d, 1, J=8.0 Hz, H-1), and 7.22—7.31 (15, 3C₆H₅). Found: C, 71.29, H, 6.78%. Calcd for C₃₀H₃₄O₇: C, 71.13; H, 6.77%.

Methyl 3-O-Acetyl-2,4,6-tri-O-benzyl- α -D-glucopyranoside(21a): The treatment of 21b with 1 and subsequent chromatographic separation (Solvent A, 30:1) gave 21a, whose ¹H NMR spectrum was identical with that of an authentic sample. ¹³)

Methyl 4-O-Acetyl-2,3,6-tri-O-benzyl-β-D-glucopyranoside (25b) and Methyl 6-O-Acetyl-2,3,4-tri-O-benzyl-β-D-glucopyranoside (26b): Methyl 2,3-di-O-benzyl-β-D-glucopyranoside¹⁴⁾ (22, 1.4 g, 3.74 mmol) was heated in benzyl chloride (14 ml) containing sodium hydride (\approx 50% dispersion, 0.22 g, \approx 4.6 mmol) under stirring for 75 min at 75°C. The mixture was then processed and chromatographed (Solvent A, gradient) to afford 2b (0.28 g, 13%), methyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside (23, 1.12 g, 60%, R_f =0.40, Solvent A, 10:1), and methyl 2,3,4-tri-O-benzyl-β-D-glucopyranoside¹⁵⁾ (24, 0.34 g, 18%, R=0.25).

The acetylation of **23** with acetic anhydride in pyridine furnished **25b**: $[\alpha]_D$ -7° (c 2.0, CHCl₃); NMR(CDCl₃) δ = 1.73 (s, 3, CH₃CO), 3.51 (s, 3, CH₃O), 4.22 (d, 1, J=7.2 Hz, H-1), and 7.18—7.25 (15, 3C₆H₅). Found: C, 70.41; H, 6.66%. Calcd for C₃₀H₃₄O₇: C, 71.13; H, 6.77%.

The acetylation of **24** gave **26b**: mp 70—70.5 °C (from hexane); $[\alpha]_D + 19^\circ$ (c 1.0, CHCl₃) [lit, ¹⁶) mp 61—63 °C; $[\alpha]_D + 26^\circ$ (CHCl₃)]. Found: C, 70.91; H, 6.68%. Calcd for $C_{30}H_{34}O_7$: C, 71.13; H, 6.77%.

Methyl 4-O-Acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranoside (25a): The treatment of 25b with 1 and subsequent chromatographic purification (Solvent A, 30:1) afforded 25a as a syrup: $[\alpha]_D$ +14° (c 2.0, CHCl₃); NMR(CCl₄) δ =1.74 (s, 3, CH₃CO), 3.36 (s, 3, CH₃O), and 7.21—7.26 (15, 3C₆H₅). Found: C, 70.27; H, 6.40%. Calcd for C₃₀H₃₄O₇: C, 71.13; H, 6.77%.

Methyl 6-O-Acetyl-2,3,4-tri-O-benzyl- α -D-glucopyranoside (26a): The treatment of **26b** with **1** and subsequent chromatographic separation (Solvent A, 20:1) gave **26a** as a syrup: $[\alpha]_D + 28^{\circ}$ (c 1.0, CHCl₃); NMR CCl₄) δ =1.96 (s, 3, CH₃CO), 3.34 (s, 3, CH₃O), and 7.23—7.27 (15, 3C₆H₅). Found: C, 70.80; H, 6.79%. Calcd for C₃₀H₃₄O₇: C, 71.13; H, 6.77%.

Methyl 2,3,4-Tri-O-benzyl-6-O-methyl-β-D-glucopyranoside (12b): A mixture of 24 (0.41 g), methyl iodide (2.7 ml), and silver oxide (1.0 g) was vigorously stirred for 40 h at room temperature. Chromatography (Solvent A, 30:1) and subsequent crystallization from hexane afforded 12b (0.31 g, 74%): mp 64—65.5 °C; $[\alpha]_D$ +5° (c 1.0, CHCl₃); NMR(CCl₄) δ=3.31 (s, 3, CH₃O), 3.48 (s, 3, CH₃O), 4.15 (d, 1, J=7.4 Hz, H-1), and 7.15—7.18 (15, 3C₆H₅). Found: C, 72.69; H, 7.07%. Calcd for C₂₉H₃₄O₆: C, 72.78; H, 7.16%.

Methyl 2,3,4-Tri-O-benzyl-6-O-methyl- α -D-glucopyranoside (12a): The treatment of 12b with 1 and subsequent chromatographic separation (Solvent A, 30:1) gave 12a as a syrup: $[\alpha]_D + 12^\circ$ (c 2.0, CHCl₃) [lit,¹⁷⁾ $[\alpha]_D + 8^\circ$ (c 0.71, CHCl₃)]. Found: C, 72.48; H, 7.05%. Calcd for $C_{29}H_{34}O_6$: C, 72.78; H, 7.16%.

Methyl 2,3,4-Tri-O-acetyl-6-O-methyl-β-D-glucopyranoside (28b): The hydrogenolysis of 12b in acetic acid and methanol in the presence of palladium black at 340 kPa and subsequent acetylation with acetic anhydride and pyridine, followed by crystallization from diisopropyl ether, furnished 28b: mp 113—113.5 °C; $[\alpha]_D$ —14° (c 0.4, CHCl₃); NMR (CDCl₃) δ=2.03 (s, 3, CH₃CO), 2.06 (s, 6, 2CH₃CO), 3.40 (s, 3, CH₃O), 3.53 (s, 3, CH₃O), and 4.44 (d, 1, J=8.0 Hz, H-1). Found: C, 50.39; H, 6.75%. Calcd for C₁₄H₂₂O₉:

C, 50.29; H, 6.63%.

Methyl 2,3,4-Tri-O-acetyl-6-O-methyl-α-D-glucopyranoside (28a): The treatment of 28b with 1 and subsequent chromatography (Solvent B, 6:1) gave 28a: mp 77.5—78.5 °C; $[\alpha]_D + 137^\circ$ (c 2.0, CHCl₃); +150° (c 1.0, MeOH) [lit, 18) mp 73.5—74 °C, $[\alpha]_D + 145^\circ$ (c 0.99, MeOH)], NMR(CDCl₃) δ= 2.00 (s, 3, CH₃CO), 2.03 (s, 3, CH₃CO), 2.07 (s, 3, CH₃CO), 3.36 (s, 3, CH₃O), and 3.42 (s, 3, CH₃O). Found: C, 50.02; H, 6.71%. Calcd for C₁₄H₂₂O₉: C, 50.29; H, 6.63%.

Methyl 2,3,4-Tri-O-benzyl-6-deoxy-β-D-glucopyranoside (13b): Methyl 2,3,4-tri-O-acetyl-6-deoxy-β-D-glucopyranoside¹⁹⁾ was benzylated with hot benzyl chloride containing powdered potassium hydroxide to afford 13b: mp 106.5—107 °C (from hexane); $[\alpha]_D$ +8° (c 0.5, CHCl₃) [lit,²⁰⁾ mp 98 °C; $[\alpha]_D$ +6.8° (c 0.7, CHCl₃)]. Found: C, 74.87; H, 7.14%. Calcd for C₂₈H₃₂O₅: C, 74.97; H 7.19%.

Methyl 2,3,4-Tri-O-benzyl-6-deoxy- α -D-glucopyranoside (13a): The treatment of 13b with 1 and subsequent chromatography (Solvent A, 50:1) gave 13a as a syrup: $[\alpha]_D + 21^\circ$ (ϵ 0.6, CHCl₃) [lit, ²⁰) $[\alpha]_D + 20.8^\circ$ (ϵ 0.7, CHCl₃)]. Found: C, 74.01; H, 6.91%. Calcd for C₂₈H₃₂O₅: C, 74.97; H, 7.19%.

Methyl 2,3,4-Tri-O-benzyl-α-D-xylopyranoside (14a): The treatment of 14b²¹ with 1 and subsequent chromatography (Solvent A, 40:1), followed by crystallization from hexane, gave 14a: mp 68—69 °C, $[\alpha]_D + 16^\circ$ (c 0.7, CHCl₃), +50° (c 0.7, CH₂Cl₂) [lit,²¹) mp 61 °C; $[\alpha]_D + 50.5^\circ$ (c 5.22, CH₂-Cl₂)]. Found: C, 74.41; H, 6.86%. Calcd for C₂₇H₃₀O₅: C, 74.63; H, 6.96%.

Cyclohexylmethyl 2,3,4,6-Tetra-O-benzyl- α -D-glucopyranoside (29a): The treatment of $29b^{22}$ with 1 and subsequent chromatography (Solvent B, 15:1) gave 29a as a syrup, identified with an authentic sample.²²

Cyclohexyl 2,3,4,6-Tetra-O-benzyl- α -D-glucopyranoside (30a): The treatment of $30b^{10}$) with 1 and subsequent chromatography (Solvent B, 15:1) gave 30a as a syrup, identified with an authentic sample. ¹⁰)

Benzyl 2,3,4,6-Tetra-O-benzyl- α -D-glucopyranoside (31b): The treatment of 31b²³ with 1 and subsequent chromatography (Solvent B, 15:1) furnished 31a: mp 94.5—95 °C (from hexane); $[\alpha]_D + 53^\circ$ (c 1.0, CHCl₃) [lit,²³) mp 93.5—94.5 °C; $[\alpha]_D^{28} + 55.8^\circ$ (c 1.63, CHCl₃)]. Found: C, 78.02; H, 6.70%. Calcd for C₄₁H₄₂O₆. C, 78.07; H, 6.71%.

2-Benzyloxyethyl, 3-Benzyloxypropyl, and 6-Benzyloxyhexyl 2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosides (32b, 33b, and 34b): A mixture of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bro-mide²4) (1.0 g, 2.4 mmol), 1,2-ethanediol (Wako, 0.27 ml), 4.8 mmol), silver oxide (1.1 g, 4.8 mmol), and benzene (10 ml) was agitated for 20 h at room temperature. The mixture was filtered, evaporated, and then chromatographed (Solvent A, 5:1) to afford 2-hydroxyethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside²5) (0.80 g, 84%). This (0.26 g) was treated with hot benzyl chloride (5 ml) containing powdered potassium hydroxide (0.93 g) for 4 h at 100 °C. Usual work-up and chromatography (Solvent A, 30:1), followed by crystallization from hexane, gave 32b (0.36 g, 81%); mp 67.5—68.5 °C; [α]_D +5° (ε 1.0, CHCl₃). Found: C, 76.49; H, 6.88%. Calcd for C₄₃H₄₆O₇. C, 76.53; H, 6.87%.

The condensation of the bromide with 1,3-propanediol (Tokyo Kasei) and 1,6-hexanediol (Tokyo Kasei) afforded 3-hydroxypropyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside²⁶) (80%) and 6-hydroxyhexyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside²⁷) (46%) respectively. The yields were substantially improved. The subsequent benzylation of them furnished 33b and 34b respectively. 33b: $[\alpha]_D + 8^\circ$ (c 2.8, CHCl₃). Found: C, 76.33; H, 6.96%. Calcd for C₄₄H₄₈O₇: C, 76.71; H, 7.02%. 34b: $[\alpha]_D + 4^\circ$ (c 2.6, CHCl₃) Found: C, 76.79; H, 7.47%. Calcd for C₄₇H₅₄O₇: C, 77.23; H, 7.45%.

2-Benzyloxyethyl, 3-Benzyloxypropyl, and 6-Benzyloxyhexyl 2,3,4,6-Tetra-O-benzyl- α -D-glucopyranosides (32a, 33a, and 34a): The treatment of 32b, 33b, and 34b with 1, and subsequent chromatographic separation (Solvent B, 10:1) gave 32a, 33a, and 34a respectively. 32a: $[\alpha]_D + 37^\circ$ (c 0.3, CHCl₃). Found: C, 75.50; H, 6.61%. Calcd for C₄₃H₄₆O₇: C, 76.53; H, 6.87%. 33a: $[\alpha]_D + 42^\circ$ (c 0.4, CHCl₃). Found: C, 75.85; H, 6.97%. Calcd for C₄₄H₄₈O₇: C, 76.71; H, 7.02%. 34a: $[\alpha]_D + 33^\circ$ (c 1.0, CHCl₃). Found: C, 76.25; H, 7.21%. Calcd for C₄₇H₅₄O₇: C, 77.23; H, 7.45%.

In the case of the reaction of **32b**, 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose (22%), whose IR and NMR spectra were superimposable with those of an authentic specimen,²⁸⁾ was isolated on chromatography.

Preparation of Additives. 1-Benzyloxy-2-methoxyethane (9): 2-Benzyloxyethanol (Tokyo Kasei) was methylated with methyl iodide in the presence of silver oxide to form 9: bp 161-163 °C/123 mmHg,† $n_{\rm b}$ 1.4967 NMR(CCl₄) $\delta=3.33$ (s, 3, CH₃O), 3.55 (s, 4, (CH₂)₂), 4.53 (s, 2, PhCH₂), and 7.25 (s, 5, C₆H₅). Found: C, 72.22; H, 8.30%. Calcd for C₁₀-H₁₄O₂: C, 72.26; H, 8.49%.

2-(Benzyloxymethyl)tetrahydropyran (10): The benzylation of 2-(hydroxymethyl)tetrahydropyran²⁹⁾ with hot benzyl chloride containing powdered potassium hydroxide afforded 10: bp 169—172 °C/23—25 mmHg; $n_{\rm D}$ 1.5132; NMR (CDCl₃) δ =23.2, 26.0, 28.3, 68.5, 73.4, 73.8, 76.8, 127.5, 127.7 (2C), 128.3 (2C), and 138.3. Found: C, 75.46; H, 8.82%. Calcd for $C_{13}H_{18}O_2$: C, 75.69; H, 8.79%.

trans-1,2-Bis(benzyloxy)cyclohexane (11): The benzylation of trans-1,2-cyclohexanediol (Aldrich) with hot benzyl chloride and potassium hydroxide furnished 11: bp 202—204 °C/2.5 mmHg; $n_{\rm D}$ 1.5470 [lit,30) bp 182—183 °C/2 mmHg, $n_{\rm D}^{20}$ 1.5468]; NMR(CCl₄) δ =0.93—2.23 (m, 8, (CH₂)₄), 3.31 (m, 2, H-1 and H-2), 4.56 (s, 4, 2PhCH₂), and 7.21 (s, 10, 2C₆H₅). Found: C, 81.09; H, 8.20% Calcd for C₂₀H₂₄O₂: C, 81.04; H, 8.16%.

Anomerization of Disaccharides. Anomerization of Methyl 6-O-(2,3,4,6-Tetra-O-benzyl- β -D-glucopyranosyl)-2,3,4-tri-O-benzyl- α -D-glucopyranoside (16b) into the α -Disaccharide (16a): A solution of $16b^{31}$) (36.4 mg, 0.037 mmol) in dichloromethane (0.37 ml) was treated with 1 (4.1 μ l 0.037 mmol). After 30 s, the reaction was quenched and the mixture was processed as usual. Subsequent chromatographic separation (Solvent A, 30:1) gave 16a (16.6 mg, 46%): mp 105—106 °C; [α]_D +59° (c 1.0, CHCl₃) [lit, 32) mp 101.5 °C; [α]_{E0} +59.3° (c 1.78, CHCl₃)]. Found: C, 75.38; H, 6.71%. Calcd for $C_{62}H_{66}O_{11}$. C, 75.43; H, 6.74%.

The slower-moving, unchanged **16b** (4.9 mg, 14%) was recovered.

Anomerization of Methyl 3-O-(2,3,4,6-Tetra-O-benzyl- β -D-glucopyranosyl)-2,4-di-O-benzyl- α -D-xylopyranoside (17b) into the α -Disaccharide (17a): A solution of 17b³³³) (297 mg, 0.34 mmol) in dichloromethane (3.4 ml) was treated with 1 (38 μ l, 0.34 mmol). After 60 s, the reaction was quenched. The mixture was then processed and chromatographed (Solvent B, 4:1) to furnish 17a (40 mg, 14%), which was identified with a sample prepared alternatively:³³³) [α]_D +58° (ϵ 1.0, CHCl₃); NMR(CDCl₃) δ =96.7 (Cglc-1) and 97.7 (Cxyl-1). Found: C, 74.04; H, 6.93%. Calcd for C54H58O10: C, 74.81; H, 6.94%.

The faster-moving, unchanged 17b (42 mg, 14%) was recovered.

References

- 1) E. Pacsu, Chem. Ber., 61, 1508 (1928).
- 2) R. E. Reeves and L. W. Mazzeno, Jr., J. Am. Chem. Soc., **76**, 2219 (1954).
 - † 1 mmHg≈133.322 Pa.

- 3) a) B. Lindberg, Acta Chem. Scand., 3, 1355 (1949); b) I. Karasawa and R. Onishi, J. Agr. Chem. Soc. Jpn., 35, 813 (1961); c) J. J. Schneider, Carbohydr. Res., 12, 369 (1970).
- 4) R. U. Lemieux, Adv. Carbohydr. Chem., 9, 1 (1954); b) M. G. Blair and W. Pigman, Angew. Chem., 69, 422 (1957); c) R. U. Lemieux, "Molecular Rearrangements," ed by P. deMayo, Intersci. Pub., New York (1964), p. 709; d) B. Capon, Chem. Rev., 69, 407 (1969); e) W. G. Overend, "The Carbohydrates, Chemistry and Biochemistry," 2nd ed, by W. Pigman and D. Horton, Academic Press, New York (1972), Vol. IA, p. 310.
- 5) N. Morishima, S. Koto, and S. Zen, Chem. Lett., 1979, 749.
- 6) In general, the anomeric center of O-alkyl sugar derivatives is more reactive than that of O-acetyl ones: e.g., T. Ishikawa and H. G. Fletcher, Jr., J. Org. Chem., 34, 5636 (1969).
- 7) R. U. Lemieux and W. P. Shyluk, Can. J. Chem., 33, 120 (1955).
- 8) a) B. Lindberg, Acta Chem. Scand., 3, 1153 (1949); b) 4, 1446 (1950); c) 3, 1350 (1949).
- 9) P. W. Austin, F. E. Hardy, J. G. Buchanan, and J. Baddiley, J. Chem., Soc., 1964, 2128.
- 10) S. Koto, N. Morhishima, and S. Zen, *Bull. Chem. Soc. Jpn.*, **52**, 784 (1979).
- 11) M. A. E. Shaban and R. W. Jeanloz, Carbohydr. Res., 52, 103 (1976).
- 12) H. B. Boren, G. Ekborg, K. Eklind, P. J. Garegg, A. Pilotti, and C.-G. Swahn, *Acta Chem. Scand.*, 27, 2639 (1973).
- 13) S. Koto, Y. Takebe, and S. Zen, Bull. Chem. Soc. Jpn., 45, 291 (1972).
- 14) J. C. Dennison and D. I. McGilvray, J. Chem. Soc., 1951, 1616.
- 15) S. S. Bhattacharjee and P. A. Gorin, Can. J. Chem., 47, 1195 (1969).
- 16) N. Pravdic and D. Keglevic, *Tetrahedron*, **21**, 1897 (1965).
- 17) A. Liptak, I. Jodal, and P. Nanasi, Carbohydr. Res., 44, 1 (1975).
- 18) B. A. Dmitriev, A. A. Kost, and N. K. Kochetkov, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1969, 903 (CA-71-30665d).
- 19) J. Compton, J. Am. Chem. Soc., 60, 395 (1938).
- 20) B. Bernet and A. Vasella, Helv. Chim. Acta, 62, 1990 (1979).
- 21) S. Tejima, R. K. Ness, R. L. Kaufman, and H. G. Flectcher, Jr., Carbohydr. Res., 7, 485 (1968).
- 22) S. Koto, T. Sato, N. Morishima, and S. Zen, Bull. Chem. Soc. Jpn., 53, 1761 (1980).
- 23) M. E. Tate and C. T. Bishop, Can. J. Chem., 41, 1801 (1963).
- 24) P. G. Scheuer and F. Smith, J. Am. Chem. Soc., 76, 3224 (1954).
- 25) E. Fischer and H. Fischer, Chem. Ber., 43, 2521 (1910).
- 26) S. Karjala and K. P. Link, J. Am. Chem. Soc., 62, 917 (1940).
- 27) B. R. Bhattacharyya, K. Ramaswamy, and R. K. Crane, Carbohydr. Res., 47, 167 (1976).
- 28) S. Koto, N. Morishima, Y. Miyata, and S. Zen, Bull. Chem. Soc. Jpn., 49, 2639 (1976).
- 29) Pat. Belg. 633, 117 (CA-61-P4321f).
- 30) S. Mamedov and I. L. Nizker, Zh. Obsch. Khim., 33, 841 (1963).
- 31) S. Koto, Y. Hamada, and S. Zen, Chem. Lett., 1975, 587.
- 32) J.-R. Pougny, J.-C. Jaquinet, M. Nassr, D. Duchet, M.-L. Milet, and P. Sinay, J. Am. Chem. Soc., 99, 6762 (1977).
- 33) N. Morishima, S. Koto, C. Kusuhara, and S. Zen, Chem. Lett., 1981, 427.